Raspberry Pi Model 2 v1.1
© Raspberry Pi 2014

fritzing

olLogaspon

when clicked

T)E)adcast gpioserveron |
broadcast gpio27on |

How do you think you can turn the led off?

Can you make the led flash on and off?

0

axepod

RUNNING @ python’

Type your code in the new window that opens
(you don't have to include the #comments in red)

ofo

HAM

Select the Geany app:

® © M * O Ereonis

{} Programming 2 <A BlueJ Java IDE
& Office > ,@7 Geany Programmer\Editor

quizero2 py -
IFlIe Edit Search View Document Project Build Tools Help

B~ @ x | & Compile o[4%

[

= : :
(ﬁ) Internet > 1 I REC Rl A fastand lightweight IDE using GTK2 < symbois|> [quizerozpy Make shift+F9

°

Make Custom Target .~ Shift+Ctr+F9
Make Object Shift+F8

HGameS > * Mathematica
®Accessorles > ﬁ mu

)
Node-RED
@ Help > ﬂ 2 fenr ap SetBuild Commands
1
Python 2 (IDLI ¢ 1 ontrol LED brightness
v (DLE) — PR B Sdar Shider opp. Stari-c end10, comand-brightness)
g 2500

Preferences > app.a
3 @) python 3 (DLE) v
q Run.. £ scratch

0 Shutdown Sense HAT Emulator

[—

i TOMeIpIGUZer0% Py openeatsy

Sz 11:52:33:
Compiler | 115234

Messages 115238 e
115252

—— 115308

Terminal | 1) 05,15,

115333 Fle
11:53:33: File fnomelpiiguzero2.py opened(). d

ine:1/17 o0 sek0 INS TAB mode:Unix(LF) encoding:UTF-8 filetype: Python scope:unknown

=N Select 'Build' -> 'Execute’ or press F5 to run the
2 code. Don't forget you save your work as a .py
file (e.g mycode.py)

Raspberry Pi Model 2 v1.1
© Raspberry Pi 2014

LIGHT UP AN LED
@ python’

fritzing

First import some useful libraries
This one lets us talk to the GPIO pins
from gpiozero import LED

Q
0
X
0
H
o
o}
.

o

This one lets us do cool stuff with time and timing
from time import sleep

Create an LED object for GPIO 27 (pin 13 if you're counting pins)
myled = LED(27)

print('Turning on')

myled.on()

sleep(2)

print('Turning off')

myled.off()

sleep(2)

print('Blinking’)
myled.blink(on_time=0.5,0ff time=0.5,n=5,background=False)

Can you change the speed and number
3 of flashes?

7

REACTION GAME WITH

button

DSI (DISPLAY)

102 |d Ausqdsey
T'TA Z I3pO Id A1iaqdsey

ETHERNET

You'll need to run this block
once before the gpis sensor
values become available

burzyLiy

. T—
{ when clicked

rblT)adcast gploserveron
ﬁaﬁadcast corfig8in
rbﬁadcast corfig7in

l/when space key pressed
(broadcast gpic27cff

[BE pick random © 2 O o8
(broadcast gpioz7on

SERIENEY © opio7 sensor value = [or gpio8 sensor value = [i

if = gpio?7 sensor value = 0|

say for @ secs

if = gpic® sensor value =[i

say for @) secs

l:l?lt secs
rbﬁ)adcast gplo27off

Can you use the green LEDs to show who won?

REACTION GAME WITH @ python

olLogaspon

- -
>
=

First import some helpful libraries

This one lets us use LEDs and button with the GPIO pins
from gpiozero import Button, LED

This one has useful time functions

from time import sleep

This library lets us do random stuff

import random

led = LED(27) # Our LED is on GPIO27 (pinl3)

player 1 = Button(7) # Button connected to GPIO7 (pin26)
player 2 = Button(8) # Button connected to GPIO8 (pin24)

time = random.uniform(1l, 8) # Wait between 1 and 8 seconds
sleep(time)
led.on() # Turn LED on

while True: # Forever
if player l.is pressed:
print("Player 1 wins!")
break
if player 2.is_pressed:
print("Player 2 wins!")
break

led.off() # Turn LED off

Can you use the green LEDs to show who
won?

Can you make the game 'best of 3' ?

T VAIRIIA\IILE BRIGHTNESS LED

=
............... led python’
R - breadboard
220 ohm -- -«
resistor 3 WSS DOSSSSSS - GPIO pins
/””')
Jumper wire gy e 2111
5 ‘ ppppp

This works -
fritzing

from gpiozero import PWMLED

We can use Pulse Width Modulation (PWM)
to vary the brightness of an LED

from time import sleep

myled = PWMLED(27)

Setting the LED's value sets its brightness
print('LED on full')

myled.value = 1 # maximum value is 1

sleep(1l)

print('LED on half')
myled.value = 0.5
sleep(1l)

print('LED off"')
myled.value = 0
sleep(1l)

print('Varying brightness')
count = 0 # set a counter
while count < 5: # Do it 5 times
print(count)
for x in range(1,100): #from 1 to 100
myled.value = x/100
sleep(0.05)
for x in range(100,1,-1): # from 100 to 1
myled.value = x/100
sleep(0.05)
count+=1 # Add 1 to our counter

o

I y
>
=

oLogaspon

RGBLED @ python’

oLogaspon

Long leg connects
to ground

o D) II

= o D)

;©u& |oo !

a'g_) [!

gg L) L]

P < L) o

=) —\

Eg KK ——‘

oo — A

:% e o '4 \
= N
S N\
- N\

1339 RGB Led

burziLiy

An RGB LED can be different colours

from gpiozero import RGBLED PN Q
from time import sleep 0 a
import random # Do random things 4
O

: (o]

Create an RGBLED object for GPIO pins 14,15 and 18 HAMY

myled = RGBLED(14,15,18)

print('white')
myled.on()
sleep(1l)
led.off
princ(red) What other colours can you create

myled.red = 1

sleep(1l) y
by mixing red, green and blue
myled.off() .)
print('green') ||ght
myled.green = 1
sleep(1l)
myled.off()
print('blue’)
myled.blue = 1
sleep(1l)

print('random colour disco')

t = 0 # create a timer variable
while t < 10: # Work for 10 seconds
r = random.uniform(0,1) # random value for red
g = random.uniform(0,1) # random value for green ES

b = random.uniform(0,1) # random value for blue

we can set how much each colour is on like PWMLED
myled.color=(r,g,b) # quick way of setting all three colours
sleep(0.4)

t =t + 0.4

BUZZ BUZZER

oLogaspon

- -
>
=

Raspberry Pi Model 2 v1.1
© Raspberry Pi 2014

41
~ Audio
)

ETHERNET

fritzing

#First import the gpiozero library and load the buzzer functions

from gpiozero import Buzzer
Import the time library's sleep function
from time import sleep

mybuzz = Buzzer(27) # Buzzer connected to GPI027

mybuzz.on()
sleep(l)
mybuzz.off()

We can change the note that the buzzer
makes by feeding it a square wave. In
other words, turn it on and off quickly!

BUZZ BUZZER WITH @ python

olLogaspon

-
>
=

first import some helpful libraries

This one lets us use buzzer with the GPIO pins
from gpiozero import Buzzer

This one has useful time functions

from time import sleep

mybuzz = Buzzer(27) # The buzzer is on GPIO27 (pinl3)

on_time = 0.001

off time = 0.001

Turn the buzzer on and off 100 times
mybuzz.beep(on_time,off time,100,False)

Try adjusting the values of off _time and
on_time that you use to see how it
affects the sound.

Can you modify the code so that it plays
a series of notes of increasing
frequency?

What happens if you change False to True?

Can you modify the 'Reaction Time' code to
include a buzzer that sounds when a player
presses their button? Make it play a different
note for each player

Gnd

—

o]

(72]

C
5 _—\ I
(72]

2o

ol

/ ‘ GPTO
Raspberry Pi Model 2 v1.1

This time we're using the © Raspberny Pl 2014
+5 volts pin. Make sure
you connect it to the
correct pin on the
sensor!

PPPPP

fritzing

The PIR sensor uses Infra-red light to detect
movement. Can you see it?

The sensor's output is 0 when no motion is detected,
then changes to 1 when something moves.

Too sensitive? You can adjust its range:

Sensitivity

":)

ologaspo)n

T
>
=

from gpiozero import MotionSensor, LED, Buzzer
from signal import pause

#PIR is connected to GPIO 14

pir = MotionSensor(14)

LED is connected to GPIO 27
led = LED(27)

Buzzer is connected to GPIO 11
buzz = Buzzer(1ll)

Turn everything off first
led.off()

buzz.off()

print('Alarm active')

def alert(): # A function that turns on the LED and buzzes

led.on()
buzz.beep(0.001,0.001,750,False)
print('Alert!’)

def alertover(): # A function to turn off the LED
led.off()
print('Panic over!')

pir.when_motion = alert
pir.when _no motion = alertover

pause() # Stops the program from ending straightaway

Can you modify the code so that the LED flashes?

The buzzer only sounds for a few seconds. How
about making it continue until a button is pressed
to silence the alarm?

PAVED WITH GOLD

Minecraft- Predition

We're going to program Minecraft so that we
leave a trail of gold behind us.

load the Minecraft API - the functions to talk to Minecraft

rt mcp1 minecraft 2s minecraft
ort mcpi.block 25 block
£ time

Connect our program to Minecraft
mc = minecraft.Minecraft.create()

Write our function to leave a trail of gold behind us

- goldsteps():
Get the position of the player
pos = mc.player.getTilePos()
Get the type of block underneath (y-1) the player
b = mc.getBlock(pos.x,pos.y-1,pos.z)
if the blokc is grass...
b == block.GRASS.id:
...change it to gold
mc.setBlock(pos.x,pos.y-1,pos.z,block.GOLD BLOCK.id)

#Main code block
» True:
time.sleep(0.25)

run our function
goldsteps()

Can you modify your code so that it leaves a
different block behind?

oLogaspon

T

> =)
1

=

pos! -96.3, 0.9, 58.3

In Minecraft Pi Edition there is no way to
detonate TNT... unless we use some Python!

load the Minecraft API - the functions to talk to Minecraft
import mepi.minecraft as minecraft

import time

import random

#Connect our program to Minecraft
mc = minecraft.Minecraft.create()

while True:

Read the list of events that have happened and look for things being hit
hits = mc.events.pollBlockHits()
check each event
for hit in hits:
get the block type that was hit
block = mc.getBlockWithData(hit.pos.x, hit.pos.y, hit.pos.z)
if its data value is 0...
1if block.data ==
... set it to 1
block.data = (block.data + 1)
mc.setBlock(hit.pos.x, hit.pos.y, hit.pos.z, block.id, block.data)
send a chat message to confirm
mc.postToChat("block is now" + str(block.data))
time.sleep(0.1)

Run your code.
Place a TNT block
Switch to your sword.
Use it on the TNT (RIGHT click)
10 Hit the TNT a couple of times (LEFT click)

BIGGER BOOMI!

| |

CLLLLLLLLLLLL) L
DSI (DISPLAY)

@
3 o

i -

S o

H

8

g -
2

3

H] €]

IRNRNRNNNERENNN

i |
(YY3UWYD) ISO

¥10Z Id Auaqdsey ©
T'TA Z I3pON Id A11aqdsey

Let's make a more impressive explosion crater! fritzing

Minecrait- Predition E“:“:I

We'll combine lots of the Python code we've
11 already used before (led, buzzer, reaction game)

o,

oLogaspo)n

- -
>
=

1 from gpiozero import Button, LED, Buzzer

2 import mcpi.minecraft as minecraft

3 import mcpi.block as block

4 from time import sleep

5

6 button = Button(14) # Our button is connected to pin 14
7 led = LED(15) # Our LED is conncted to pin 15

8 buzz = Buzzer(18) # Our buzzer is conncted to pinl8

9

10 mc = minecraft.Minecraft.create() # Connect to Minecraft - it must be running!

12 # Function to flash LED and make a beeping noise, faster and faster
13 @=def countdown():

14 t =0.16 # starting on/off time for buzzer and LED

15 repeat = 3 # starting number of flashes/beeps

16 © for i in range(5): # Countdown from 5

17 led.blink(on_time=t, off_time=t, n=repeat,background=True)

18 mc.postToChat(str(5-i)) # Show timer on Minecraft screen

19 buzz.beep(on_time=t, off_time=t, n=2,background=False)

20 t =1t/2 # halve on/off time each time through the loop

21 repeat = 2xrepeat # double number of flashes/beeps each time through loop
22

23

24 #Function to make a big, spherical hole
25 ©def bomb(x,y,z):

26 mc.setBlock(x+1,y,z,block.TNT.id) # place a TNT block (just for show)
27 sleep(1)

28 mc.postToChat ('BOOM! ")

29 blastRadius = 5 # The radius of our crater (in blocks)

30 © for x in range(-1xblastRadius,blastRadius): # x direction

31 o for y in range(-1xblastRadius, blastRadius): # y direction

32 © for z in range(-1xblastRadius, blastRadius): # z direction

33 o if xkk2 + y*x*2 + z%x2 < blastRadiuskx2: # make it spherical
34 mc.setBlock(pos.x + X, pos.y + y, pos.z +z, block.AIR)
35

36 # Main program

37

38 o©while True:

39 sleep(0.1)

40 button.wait_for_press()

41 pos = mc.player.getTilePos() # Get the player's position

42 countdown () # Start countdown

43 bomb(pos.x, pos.y, pos.z) # Set bomb

44

45 # Note nx%2 is the same as n squared (nxn)

11

12

7 SEGMENT DISPLAY WITH & python’

jERRnnnn 1L
DSI (DISPLAY)

rhént display

=l
03
o »
T
w o
T
o>

3
g~<
<X
=

9]
S
=t
Sl N
<
s
=

fritzing
A seven segment display uses LEDs to show
numbers. Each LED element is normally referred
to by a letter, and can be switched on or off to
make the correct shape.

(&) So by &)
turning on a, ' '
b, c, d, e,

(g) (g

and f, we
can make a
C Zero ' '
SCIRD @ ©

The Python code on the next page can be used to
control the seven segment display.

from gpiozero import LED
import time

variables to store pins for each segment

led_a = LED(25)# uses BCM numbering

led b = LED(24)

led_c = LED(23)

led d = LED(9)

led e = LED(11)

led £ - LED(S) Can you _add extra patterns for
led_g = LED(7) the remaining numbers (2-9) ?
led h = LED(10)

Design the patterns for each number
digit zero = [led _a, led b, led c, led d, led e, led f]
digit_one = [led_b, led c]

create a list of all the segment variables

leds = [led _a, led b, led ¢, led d, led e, led f, led g, led h]
Create simple function to turn all segments off

def all off():

iLor segment in leds:
segment.off ()

Createl a function to test all segments
def test.segs()

a11 _off()

ior segment in leds:
. segment.on()
‘time.sleep(0.5)
segment off ()

create! a functlon to display a number
def dlsplay num(dlglt)
all _Off()
for segment in digit: Use the dotted lines to help

:segment -on() you get each block of code

test segs() aligned correctly.

time.sleep(1l)
display num(digit_ zero)
time.sleep(1l)
display num(digit_one)
time.sleep(1l)

Extend and modify the code so that
the leds count down from 9 to 0.
Can you use a loop and another list?

12

Cogxspo)

o

13

burzyLay

\\\\\\\\\\\\\\\\\\\\\\\

DDDDDDDDDDDD

)))))))))))

EEEEEEEE

UUUUU

! LIGHT SENSOR @ python’

¥102Z |d Auaqdsey @
T°TA Z I9pOI Id A1iagdsey

UUUUU 0.47uf cépacitor
(white stripe side/short

leg goes to gnd)

from gpiozero import LightSensor, LED
import time

#set the value of threshold depending
on how bright it is in the room

#
s

1
#

try:

LightSensor(22,threshold=0.5)

LED(27)

Turn LED on when it gets dark
s.when_dark = l.on

Turn it off when it gets light
s.when_light = l.off

while True:
print the brightness level
- useful for adjusting threshold
print(s.value)
time.sleep(0.2)

Type ctrl+c to exit
except KeyboardInterrupt:

print('Byeeee')

oLogaspon

.-
>
=

9 TRAFFIC LIGHTS CHALLENGE

HAMG

Gva]sv] -
[T |

DSI (DISPLAY)

)

11

e e o o o e e o o o

e e o o o e o 0 o o

e e o o o e e o o o

e e o o o e e o o o

e e o o o e o 0 o o

e e o o o e e o o o

®e e o o o © o o o o

e o o o o e o o o o

e e o o o e o o o o

(VY3WYI) ISO 99909¢ e o o o o
® e o o o ® o o o o

e e o o o e o o o o

ETHERNET oo e e DD
® o o o o e e o o o

e o 0 o o e o o o o

® o 0 o o e o o o o

e o o o o e e o o o

butzyLiy

Can you build a traffic light simulator?

Connect the LEDs and resistors to the Pi and
then write the code to make them display the
correct sequence.

Remember the STOP (red) and GO (green) cycles

should be longer than the GET READY (when
amber is on).

14

FROZEN - o

resistor variable
sistor

¥102 Id Auaqdsey 6
T'TA Z I3pOI Id Auaqdsey

0.47 uf capacitor
(note one side has a white stripe)

buyzyLy

We want to be able to freeze Minecraft blocks,
but have control over how far our magic powers
can reach. T

Let's have the coldness
spreading out from us
in this shape, but only
freezing blocks that are

NOT air.

We can adjust the variable resistor to set the
range of our freezing. Just like an LDR, it is an
analogue component so we use a capacitor to
make a timing circuit.

15

LoNOTUVAEWNE

o

We're pretending the variable resistor is an LDR
(LightSensor) and hacking the gpiozero class so
that it does what we want.

- =
>
=

from gpiozero import LightSensor, Button
import mcpi.minecraft as minecraft
import mcpi.block as block

button = Button(16) # Our button is on pin 16
We're going to pretend our variable resistor is an LDR
pot = LightSensor(17, charge_time_limit=0.02)
max_spread = 10 # Adjust this value to set maximum range

mc = minecraft.Minecraft.create() # Connect to Minecraft

Function to work our Freezing ray

We will find every block in all three directions, up to the max range we've setBlock
check that it is not AIR and then turn it to ICE.

This will use 3 nested loops, one for each direction (x,y,z)

Bdef freezeray(spread):
pos = mc.player.getTilePos() # get current player's position
= for z_spread in range(®, spread): # First loop: Z direction
print('Freezing distance = ' + str(z_spread))
I for x_spread in range (1- (z_spread+l), z_spread+l): # 2nd loop: X direction
] for y_spread in range(-1, z_spread): # Final loop: Y direction

target_position = (pos.x + x_spread, pos.y + y_spread, pos.z + z_sprea
target_block = mc.getBlock(target_position) # get the block type

T if target_block != block.AIR.id: # if block is not AIR
mc.setBlock(target_position, block.ICE.id) # turn to ICE

try:
while True:

Read the value of our variable resistor (it will be between @ and 1)

and multiply by our spread

value = int(pot._read() * max_spread)

print(value)

if button.is_pressed: # When the button is pressed

freezeray(value) # Run the freeze ray function

except KeyboardInterrupt:
T exit()

Can you modify the code to increase the
maximum range?

Can you make a lava-ray?

15

olLogaspon

d)

Brightness

htf://pinloroni. zom [{=M =

s g

A VWARNING |

Brightness 255 is very bright!

Don't stare at the LEDs when set

to 255 - It may hurt your eyes.
_ Especially the white ones!

import piglow Turn everything off

|
HS/

.

piglow.all(0)
piglow.red(255)
piglow.show()

Turn everything off when the

‘ | : :
code ends.

piglow.clear_on_exit = True

piglow.leg(3,255)
piglow.show()

Challenge: CPU monitor

Can you write code that makes the
PiGlow light up depending on how

piglow.set(11,255) hard the CPU is working ?

iglow.show
PIg () 4532 OF import psutil

[The numbers for the LEDs in Python are one less than in Scratch]

cpu = psutil.cpu_percent()

Fed up with typing piglow.show()?

piglow.auto_update = True ah
on

(but complex patterns will now run slower) pgt

xxxxx
ooooo

ULM2003A
Driver

DSI (DISPLAY)

Raspberry Pi
Model B (R2)

N
2
“
n
>
=
m
bl
>

ETHERNET

fritzing

Stepper motors are DC motors that move in steps. They have
multiple coils that are organised in groups called "phases". By
energising each phase in sequence, the motor will rotate, one

step at a time.
2, Pink e
by OV i
5. Red '———'—J
1,

Blue

We use a driver board which we can control from the Pi. This
way we can reverse the current and turn the motor in both
directions.

17

V1.0

Import required libraries
import time
from gpiozero import OutputDevice as stepper

IN1 = stepper(25)) ¥
IN2 = stepper(8) - 5
IN3 = stepper(7) HA M%
IN4 = stepper(1ll)

StepPins = [IN1,IN2,IN3,IN4]

Define sequence
as shown in manufacturers datasheet
Seq = [[1,0,0,1],
(1,0,0,0],
(1,1,0,0],
(0,1,0,0],
(0,1,1,0], How can you make the motor turn
(0,0,1,0], th it o
(000.1°17, e opposite way
(0,0,0,1]]

Can you make the motor turn faster?

StepCount = len(Seq)
StepDir = 1
WaitTime = 0.01 How many steps will return the

StepCounter = 0 motor to its starting position?

while True:

print(StepCounter)
print(Seq[StepCounter])
for pin in range(0, 4):
Xxpin = StepPins[pin]
1f Seq[StepCounter][pin]!=0:
xpin.on()
else:
xpin.off ()

StepCounter += StepDir

If we reach the end of the sequence
start again
1L (StepCounter>=StepCount):
StepCounter = 0
1f (StepCounter<0):
StepCounter = StepCount+StepDir

Wait before moving on
time.sleep(WaitTime)

17 V1.0

The CodeBug can
be tethered to the
Pi and then

programmed using

It has 2 buttons (the
eyes), 6 input/outputs
(legs) and a 5x5 LED
matrix

You can sit the %

CodeBug onto the :
GPIO pins rather P ‘ :
than use wires

Raspberry Pi Model 2 v1.1
© Raspberry Pi 2014

18

fﬁtzjng V1.0

import codebug_i2c_tether as cb

from time import sleep 0

(@]
(o]
&
o
bug = cb.CodeBug() # Create a connection to the codebug Hl\M%‘
bug.open()

bug.clear() # Clear the LED matrix

bug.set pixel(0,0,1) # bottom left LED

sleep(OTlZ) What other patterns can you
bug.set_pixel(0,4,1) # top left LED make?

sleep(0.4)

bug.set_pixel(4,4,1) # top right LED

sleep(0.4)

bug.set_pixel(4,0,1) # bottom left LED

sleep(0.4)

bug.clear()

start at bottom row (0) and move up to top (row 4)

for x in range(0,4):
bug.set_row(x,0bl1111) # all LEDs in row on
sleep(0.2)

print('press button A')

while bug.get_input('A') == 0: # wait for button A press
print('waiting’)

for i in range(0,-30,-1): # scroll all the way across screen
bug.write_text(i, 0, 'Hello', direction="right")
~leep(0.1)

18 V10 Can you make the text move faster?

buiziLiy

OCoOoONOOTUAEWNER

A SIMPLE GUI

GPIOZero Contro - 0 x
Simple On/Off Button Control

LED On

eoen |

aqdsey O

¥102Z Id Al
T°TA Z [9pOW Id Aliagdsey

Let's use the guider library to make a simple GUI
to control our LED circuit

from gpiozero import PWMLED
from guizero import x

led = PWMLED(27) # Our LED is on pin 27|
app = App("GPIOZero Control") # Create a window

text label

textl = Text(app, "Simple On/0ff Button Control")

on-screen button to turn on LED

button_on = PushButton(app, led.on, text="LED On")

on-screen button to turn off LED

button_off = PushButton(app, led.off, text="LED Off")

app.display()

- 0O X

Now try a slider for LED Sider Corerol
brightness. This time we'll make 0

the window smaller too. J

from gpiozero import PWMLED
from guizero import x

led = PWMLED(27) # Our LED is on pin 27

?def brightness(value):
led.value = float(value)/10.0

Create a window 100 x 150 pixels
app = App("GPIOZero Control”, height=100, width=150)

=
RPOOWONOU S WN

12 # text label
13 textl = Text(app, "Slider Control")

15 # Slider to control LED brightness

16 slider = Slider(app, start=0, end=10, command=brightness)
17 app.display()

18

How about a checkbox and some coloured text?

v
| |

GPIOZero Control - O X

1 from gpiozero import PWMLED Blinking Control
2 from guizero import x

3 LED On
4 led = PWMLED(27) # Our LED is on pin 27

5) LED Off
6 blink_mode = False

7 [~ Enable blinking
8 def ledcontrol():

9 lobal blink_mode
10 if blink_mode:
11 led.blink(on_time=0.5, off_time=0.5, background=True)

12 else:

13 led.on()

14

15 def set_mode():

16 global blink_mode

17 if blink_mode:

18 blink_mode = False

19 else:

%0 blink_mode = True

1

22 app = App("GPIOZero Control", height=150, width=300) # Create a window
23 # on-screen button to turn on LED

24 textl = Text(app, "Blinking Control", color='red', size=14)

25 button_on = PushButton(app, ledcontrol, text="LED On")

26 # on-screen button to turn off LED

27 button_off = PushButton(app, led.off, text="LED Off")

28 # check-box to enable blinking of LED when switched on

29 checkbox = CheckBox(app, "Enable blinking", command=set_mode)

32 app.display()

LCoNOOTUMAEAWNE

GPIOZero Control - O
Blinking Control

I |

Put it all together! 50 on
from gpiozero import PWMLED LED Off
from guizero import x |
from time import sleep v Enable blinking

)) Blink Speed

led = PWMLED(27) # Our LED is on pin 27 -
variables to keep track of what's going on: L
blink_mode = False # is blink mode enabled? L
led_active = False # is the led turned on (in any mode)?

blink_freq = 0.5 # frequency of blinking
these will be set as global variables by functions that use them

def ledcontrol(): # turns the led on or starts it blinking
global blink_mode
global blink_freq
global led_active
led_active = True
if blink_mode:
led.blink(on_time=blink_freq, off_time=blink_freq, background=True)
else:
led.on()

def led_turn_off(): # turns led off and stops blinking
global led_active
led_active = False
led.off()

def set_mode(): # sets whether blink mode is on
this function is run whenever the box is checked or un-checked
global blink_mode

if blink_mode:
blink_mode = False
else:
blink_mode = True

def speed(speed): # set frequenecy of blinking
this function is run whenever the slider is moved
global blink_freq
global led_active
blink_freq = 1/float(speed) #freq between 8.1 and 1 second
print(blink_freq)
if (blink_mode and led_active):
led_turn_off()
led_active = True
led.blink(on_time=blink_freq, off_time=blink_freq, background=True)

app = App("GPIOZero Control", height=200, width=300) # Create a window
on-screen button to turn on LED

textl = Text(app, "Blinking Control") # text label

button_on = PushButton(app, ledcontrol, text="LED 0On")

on-screen button to turn off LED

button_off = PushButton(app, led_turn_off, text="LED Off")

check-box to enable blinking of LED when switched on
checkbox = CheckBox(app, "Enable blinking", command=set_mode)
text2 = Text(app, "Blink Speed") # text label

Slider to control LED brightness

slider = Slider(app, start=1, end=10, command=speed)
app.display()

Challenge: Create a GUI to control the
colour of an RGB LED!

X

GP|© (GENERAL PURPOSE INPUT OUTPUT)

These pins are a physical interface between the Pi and the
outside world. At the simplest level, you can think of them as
switches that you can turn on or off (input) or that the Pi can turn
on or off (output). Seventeen of the 26 pins are GPIO pins; the

others are power or ground pins.

s 110012 e 15 el 22024] ¢
000 PODVOIO =

O @ @ Q
N\

KEY: GPIO Ground 3.3v

Randomly plugging wires onto your

GPI10O will kill your PI!

AIR
STONE

GRASS

DIRT

COBBLESTONE

WOOD PLANKS
SAPLING

BEDROCK

WATER FLOWING
WATER

WATER STATIONARY
LAVA FLOWING
LAVA

LAVA STATIONARY
SAND

GRAVEL

GOLD_ORE

IRON ORE
COAL_ORE

WOOD

LEAVES

GLASS

LAPIS LAZULI_ORE
LAPIS LAZULI_ BLOCK
SANDSTONE

BED

COBWEB

GRASS TALL

WOOL

FLOWER YELLOW
FLOWER CYAN
MUSHROOM BROWN
MUSHROOM RED
GOLD BLOCK

IRON BLOCK
STONE SLAB DOUBLE

SX201€ NOILIAF Id LIVEDANIN

N -
oS o

21
22
24
26
30
31
35
37
38
39
40
41
42
43

STONE_SLAB
BRICK BLOCK

TNT

BOOKSHELF
MOSS_STONE
OBSIDIAN

TORCH

FIRE

STAIRS WOOD
CHEST

DIAMOND ORE
DIAMOND BLOCK
CRAFTING TABLE
FARMLAND

FURNACE INACTIVE
FURNACE_ACTIVE
DOOR_WOOD

LADDER

STAIRS COBBLESTONE
DOOR_IRON
REDSTONE_ORE
SNOW

ICE

SNOW_BLOCK
CACTUS

CLAY

SUGAR_CANE

FENCE
GLOWSTONE_BLOCK
BEDROCK_INVISIBLE
STONE_BRICK
GLASS PANE

MELON

FENCE GATE
GLOWING OBSIDIAN

NETHER REACTOR CORE

44
45
46
47
48
49
50
51
53
54
56
57
58
60
61
62
64
65
67
71
73
78
79
80
81
82
83
85
89
95
98
102
103
107
246
247

	Canvas 1
	Canvas 2

