
Table	of	Contents

1.1Introduction1

1.2Getting	Setup2

1.3Your	first	PHP	webpage3

1.4Working	with	text4

1.5Talking	to	the	user5

1.6Comparison	&	If	statements6

1.7If	&	Else7

1.8Cleaning	up	the	game8

1.9Remembering	values9

1.10Finishing	your	game10

	 	 	 	

I'm	learning:	PHP

BEGINNER	PHP

1

	 	 	 	

Introduction
I'm	learning:	PHP

BEGINNER	PHP

2

These	Sushi	Cards	will	help	you	learn	to	build	webpages	using	PHP,	a	very	popular

programming	language	that's	used	to	build	websites	like	Facebook	and	Wikipedia.	You

can	combine	it	with	HTML	(and	check	out	the	HTML	Sushi	Cards	if	you	don't	know	how	to

code	HTML	yet!).

1

First,	you're	going	to	need	somewhere	to	code!	PHP	needs	a	few	different	pieces	in	place

to	make	it	work	and,	if	you're	going	to	release	a	website	later,	you'll	eventually	need	to

learn	how	to	set	that	up.	For	now,	though,	let's	just	get	going	quickly	by	using	Cloud	9,	an

online	editor	that	will	do	all	the	setup	for	you!	Check	it	out	at	dojo.soy/php-edit.

2

You	can	use	your	GitHub	or	Bitbucket	account	to	sign	in	if	you	have	one.	Otherwise,	sign

up	with	your	email	address.
3

Choose	"Create	a	new	workspace"	and	fill	it	in	as	follows:

Workspace	name:	beginner-php

Description:	My	first	PHP	website

Make	sure	that	Hosted	workspace	is	selected

Choose	a	Private	workspace

Skip	over	the	Clone	from	Git	or	Mercurial	URL—you	don't	need	to

clone	anything

Choose	the	PHP,	Apache	template

4

	 	 	 	

Getting	Setup
I'm	learning:	PHP

BEGINNER	PHP

3

http://dojo.soy/php-edit

Now	just	click	on	Create	workspace	and	you're	all	set!5

Once	your	workspace	is	up	and	running,	you'll	notice	you've	been	given	a	few	files,	which

you	can	see	in	the	sidebar.
6

You're	going	to	need	to	create	a	new	file	to	put	all	your	code	in.	You	can	do	this	by

choosing	File	>	New	File	in	the	menu.
7

Once	the	file	is	opened,	you	can	save	it	by	choosing	File	>	Save	As	and	giving	it	a	name.

Save	this	one	now	as	index.php
8

You're	ready	to	make	your	first	PHP	webpage!9

	 	 	 	

Getting	Setup
I'm	learning:	PHP

BEGINNER	PHP

4

Time	to	start	coding	your	first	real	PHP	webpage!	You're	going	to	start	with	one	of	the

classics,	saying	"Hello!"	to	your	user	and,	by	the	end	of	these	cards,	you'll	be	making	a

number	guessing	game	for	the	user	to	play!

1

So,	to	begin	with,	every	PHP	webpage	will	have	at	least	a	little	bit	of	HTML	in	it.	Start	by

making	a	really	basic	one	by	typing	this	code	into	your	index.php	and	saving	it.

	<!DOCTYPE	html>

	<html>

	<head>

	<title>My	PHP	webpage</title>

	</head>

	<body>

	This	is	just	HTML	text,	it	is	not	clever	like	your	PHP	text	will	be!

	</body>

	</html>

The	things	in	the	angle	brackets	(<	>)	are	called	HTML	tags	and	you'll	be	coming	across

a	few	of	them	in	these	cards.	There	are	lots	more,	though,	and	you	can	learn	about	them

in	the	HTML	Sushi	Cards	and	in	loads	of	other	places	online!

2

	 	 	 	

Your	first	PHP	webpage
I'm	learning:	PHP

BEGINNER	PHP

5

Run	that	page	and	you'll	see	a	basic	HTML	page.	To	begin	with,	your	PHP	page	is	going

to	look	pretty	similar,	but	very	quickly	you'll	be	using	the	power	of	PHP	to	do	things	that

HTML	never	could	alone!	To	get	started,	replace	that	HTML	text	with	some	special	PHP

code.

	<body>

					<?php

									echo	"Hello	everyone!	This	is	my	first	PHP	program!";

					?>

	</body>

Notice	that	PHP	code	always	appears	inside		<?php		and		?>	.	This	is	so	the	computer	can

tell	which	parts	are	PHP	and	which	parts	are	HTML.	Using	these,	you	can	put	PHP	code

anywhere	inside	the	HTML.

Also,	notice	that	the	PHP	code	always	ends	each	line	with	a	semicolon	(;).	This	is	so

PHP	knows	to	end	this	command	and	start	another.	If	you	forget	to	do	this,	PHP	can	get

very	confused.

3

Now	save	and	run	your	PHP	file.	Congratulations!	If	it	all	worked,	you've	just	written	your

first	PHP	webpage!
4

	 	 	 	

Your	first	PHP	webpage
I'm	learning:	PHP

BEGINNER	PHP

6

Now	it's	time	to	start	working	on	your	game!	The	first	thing	you're	going	to	need	is	to	teach

the	player	the	rules.

You	might	want	to	change	things	like	the	smallest	and	biggest	numbers,	or	the	number	of

guesses	you're	going	to	give	the	player.	If	you	wrote	out	the	rules	with	plain	HTML,	you'd

have	to	go	back	and	re-write	them	every	time	you	changed	any	of	those	things.	You	don't

need	to	do	that,	though.	You	can	use	PHP	and	variables	to	include	the	numbers	as	part

of	your	text!

1

First,	you're	going	to	need	to	to	update	your	text,	so	change	the	PHP	code	on	your	page

to	this:

echo	"I've	picked	a	number	between	1	and	9
";

echo	"You	will	have	5	chances	to	try	to	guess	my	number!";

The		
		is	a	piece	of	HTML	that	tells	the	browser	to	start	a	new	line	after	it.	You	can

put	any	HTML	inside	your	PHP	and	it	will	be	treated	exactly	as	if	it	had	been	written	as

HTML.

Notice	that	you're	using	double	quotes	(")	around	your	text	instead	of	single	quotes

('),	for	two	reasons:

PHP	will	get	confused	if	you	use	an	apostrophe	inside	of	single	quotes.

Try	it	and	see!	What	happens,	and	why?

PHP	will	do	something	special	inside	of	double	quotes	that	it	won't

inside	of	single	quotes,	which	you'll	see	below.

2

	 	 	 	

Working	with	text
I'm	learning:	PHP

BEGINNER	PHP

7

Now	it's	time	for	you	to	start	adding	variables!	These	are	labels	that	you	can	use	to	store

values,	like	a	string	of	text	or	a	number.	PHP	remembers	those	values	and	lets	you	use

the	values	later	by	using	their	label.	This	lets	you	set	a	value	once	and	use	it	loads	of

times	in	your	program.

In	PHP,	all	variable	names	start	with	a	dollar	sign	($)	and	are	usually	written	in

camelCase,	where	the	first	word	starts	with	a	small	(lowercase)	letter,	there	are	no

spaces,	and	any	later	words	start	with	capital	(uppercase)	letter.

Put	this	line	in,	inside	the		<?php		but	before	the		echo		lines

$minValue	=	1;

$maxValue	=	9;

$guesses	=	5;

All	of	these	variables	are	numbers,	but	you'll	be	working	with	text	variables	later.

3

Now,	update	your	two		echo		lines	so	they	look	like	this:

echo	"I've	picked	a	number	between	{$minValue}	and	{$maxValue}
";

echo	"You	will	have	{$guesses}	chances	to	try	to	guess	my	number!";

Notice	the	curly	braces	({		and		})	around	the	variable	names	to	tell	PHP	not	to	treat

them	like	regular	text!

4

Run	your	program	and	see	what	happens.	Then	try	changing	the	values	of	some	of	the

variables	and	run	it	again.	Just	make	sure	to	set	everything	back	to	the	way	you've	got	it

here	before	moving	on!

5

	 	 	 	

Working	with	text
I'm	learning:	PHP

BEGINNER	PHP

8

Ok,	so	you	can	get	information	from	a	variable	and	show	it	to	the	player	with		echo	,	but

how	do	you	get	information	from	the	player?	After	all,	this	is	a	guessing	game,	so	you

need	some	way	to	collect	their	guesses!

1

You're	going	to	use	a	combination	of	HTML	and	PHP	to	do	this.	The	HTML	you'll	be	using

is	going	to	be	new,	even	if	you've	already	done	the	HTML	Sushi	Cards,	since	they	don't

use	many	forms	and	your	PHP	programs	will	probably	use	a	lot	of	them.	You	can	see

them	on	almost	every	website	you	use	the	internet	and	the	code	for	them	is	pretty	easy!

<form	method="get">

	Your	guess:	<input	type="text"	name="guess"/>

</form>

A	HTML	form	is	a	simple	idea:	controls—like	text	boxes,	drop-down	menus,	check	boxes

or	buttons—are	used	to	collect	information	from	users	and	send	that	information	to	your

PHP	program.	Sometimes,	responses	are	sent	to	the	users.	You'll	be	sending	responses

in	your	games.

2

Now,	time	to	add	a	form	to	your	page!	So	you	can	use	PHP	variables	and	other	code	in

creating	your	form,	you're	going	to	use		echo		statements	to	create	it,	instead	of	just	typing

the	HTML	into	the	file.	So,	add	the	following	below	your	two	existing		echo		statements:

echo	"<form	method="get">";

echo	"Your	guess:	<input	type="text"	name="guess"/>";

echo	"</form>";

Run	this	code	and	see	what	happens!

3

	 	 	 	

Talking	to	the	user
I'm	learning:	PHP

BEGINNER	PHP

9

Well,	that	didn't	quite	work	right,	did	it?	Any	idea	why?	It's	because	of	the	double	quotes	in

	<form	method="get">	.	PHP	isn't	smart	enough	to	recognise	that	they	are	part	of	the	HTML

tag;	it	reads	them	as	the	end	of	the	string	of	text	that		echo		is	trying	to	insert	into	the

page.	After	that,	it's	looking	for	a	semicolon	(;)	but	instead	it	finds		g		and	gets	very

confused!	This	kind	of	problem	can	come	up	quite	often	either	because	you've	forgotten

which	kind	of	quotes	to	use	or	you're	copying	from	another	of	your	programs	and	used

quotes	differently	there.	Luckily,	it's	very	easy	to	fix.	Just	put	a	backslash	(\)	in	front	of

your	all	your	double	quotes	(don't	forget	the	ones	in	the	input	tag!)	like	this,	to	escape	the

normal	rule	of	ending	the	string!

echo	"<form	method=\"get\">";

4

Run	the	code	again!	Now	you've	got	somewhere	for	your	user	to	put	their	text!	Type

something	in	and	press	the	enter	key.	Watch	the	page	URL	in	the	browser	and	notice

what	changes!

5

	 	 	 	

Talking	to	the	user
I'm	learning:	PHP

BEGINNER	PHP

10

The	text	that	appeared	on	the	end	of	the	URL	is	called	a	query	parameter	and	you	can

have	loads	of	them	on	the	same	URL.	The	form	automatically	added	one	(because	you

set		method="get"),	but	you	could	just	as	easily	type	them	in,	separated	by	semicolons.

PHP	reads	the	end	of	the	URL	for	the	page	it's	loaded	on	and	turns	all	the	query

parameters	into	something	called	a	key,	value	array.	You	don't	need	to	know	exactly

what	that	is	right	now,	we'll	go	into	it	in	a	later	Sushi	Card	series.	What	you	do	need	to

know	is	how	to	get	values	out	of	it.

1

All	you	need	to	do	to	get	a	value	out	of	the	array	is	pass	in	the	key	of	a	value	that's	in

there.	Since	your	form	adds	the		guess		field,	that's	the	one	you'll	be	looking	for.	You'll

want	to	assign	that	value	to	a		playerGuess		variable,	so	add	this	line	just	before	all	your

	echo		lines:

	$playerGuess	=	$_GET['guess'];

2

Now,	remind	the	player	what	their	last	guess	was	by	adding	another		echo		just	before	the

input	form:

	echo	"Your	last	guess	was	{$playerGuess}.
";

Run	the	code.	Now	you're	taking	input	from	your	player	and	giving	it	back	to	them.	Very

cool!

3

	 	 	 	

Comparison	&	If	statements
I'm	learning:	PHP

BEGINNER	PHP

11

Try	removing	all	the	query	parameters	from	the	URL	and	reloading	the	page.	Notice	that

you	now	get	"Your	last	guess	was	."

That's	not	ideal.	What	you	want	to	happen	is:

Check	if	there's	a	value	(maybe	they	haven't	made	a	guess	yet)

if	so,	show	the	message	about	the	last	guess

4

PHP	can	figure	all	this	out	and	do	it	for	you!	You	just	need	to	use	an		if		statement.

An		if		statement	uses	a	test	(in	brackets),	that	has	an	answer	that's	either	true	or	false

and,	if	it's	true,	a	piece	of	code	to	run.	You	can	do	this	to	check	if	your	variable	contains

anything	like	this:

	if(!empty($playerGuess)){

					echo	"Your	last	guess	was	{$playerGuess}.";

	}

Here		empty()		is	a	special	piece	of	PHP	that	checks	whether	the	variable	inside	its

brackets	has	a	value	and	answers	either	true	if	it	doesn't	or	false	if	it	does.	The		!		before

it	reverses	this	answer,	turning	a	true	into	a	false	and	a	false	into	a	true.	So	what	this

code	says	is:	"If	there	is	not	no	value	in	$playerGuess,	then	print	out	Your	last	guess	was

[the	value	of	player	guess]."

Replace		echo	"Your	last	guess	was	{$playerGuess}.";		with	the	code	above	and	test	it

with	and	without	answers	to	see	it	working.

5

	 	 	 	

Comparison	&	If	statements
I'm	learning:	PHP

BEGINNER	PHP

12

Now	that	you	know	how	to	use		if		statements,	you	can	start	writing	the	code	to	get	your

game	to	run!	You'll	deal	with	using	a	random	number	in	a	later	card,	but	for	now	just	add

another	variable	up	at	the	top	with	all	the	others	to	set	your	"secret"	number,	like	this:

	$secretNumber	=	5;

1

What	you	want	to	do	now	is	compare	the	player's	guess	with	the	secret	number,	and	tell

them	if	they	guessed	correctly.	To	compare	one	value	to	another	and	get	a	true	or	false

result,	you	use	two	equals	signs	(==).	If	the	values	on	either	side	are	the	same,	then	the

result	is	true;	otherwise,	it's	false.

Here's	how	you'd	check	the	player's	answer	in	your	PHP:

	if($secretNumber==$playerGuess){

					echo("
That's	right!	I	was	thinking	of	{$secretNumber}!");

	}

Add	this	code	in	(after	those	variables'	values	are	set!)	and	then	run	the	program.	Try

guessing	correctly	(i.e.	5)	and	incorrectly.

2

	 	 	 	

If	&	Else
I'm	learning:	PHP

BEGINNER	PHP

13

Have	you	noticed	a	few	issues	with	what's	happening	here?	For	one	thing,	the	player	is

still	asked	to	pick	a	number	even	when	they've	won	the	game!	You	can	fix	that,	though,	by

using		else		statements,	after	your		if		statements.	You	can't	use		else		on	its	own,	it

only	runs	the	code	inside	it	if	the	test	on	the		if		statement	just	before	it	was	false.

So,	to	only	show	the	form	for	the	next	guess	if	the	player	has	not	yet	guessed	the	secret

number,	you	need	to	add	an		else		on	to	your		if		from	above	and	move	all	the	form	code

into	it,	like	this:

	if($secretNumber==$playerGuess){

	echo("
That's	right!	I	was	thinking	of	{$secretNumber}!");

	}

	else{

					echo	"<form	method='get'>";

					echo	"Your	guess:	<input	type='text'	name='guess'/>";

					echo	"</form>";			

	}

3

	 	 	 	

If	&	Else
I'm	learning:	PHP

BEGINNER	PHP

14

It	doesn't	make	sense	to	give	the	player	the	instructions	on	how	to	play	every	single	turn.

However,	it	would	be	useful	to	tell	them	how	many	guesses	they	have	left.	To	do	this,

you'll	need	to	create	another	variable,		guessesLeft		and	add	it	to	your	file:

	$guessesLeft	=	$guesses;

Note	that	because	you	are	setting	this	variable	to	the	value	of	another,	it	must	be	declared

after	that	variable.

1

Next,	take	the	rules		echo		code	and	stick	it	into	an		if		that	checks	if	the	number	of

guesses	the	player	has	left	is	equal	to	the	number	they	started	with.	If	it	is,	then	you	know

it's	the	first	turn	and	you	can	show	them	the	rules.	If	it's	not,	then	tell	them	how	many

guesses	they	have	left.

	if($guessesLeft==$guesses){

					echo	"I've	picked	a	number	between	{$minValue}	and	{$maxValue}
";

					echo	"You	will	have	{$guesses}	chances	to	try	to	guess	my	number!
";

	}

	else{

					echo	"You	have	{$guessesLeft}	guesses	left.
";

	}

2

	 	 	 	

Cleaning	up	the	game
I'm	learning:	PHP

BEGINNER	PHP

15

If	you	run	this	code	and	play	through	it	a	few	times,	you'll	notice	that	the	number	of

guesses	never	goes	down!	There	are	two	reasons	of	that,	and	you'll	solve	them	one	at	a

time.	The	first	is	that	you	never	decrease	the	value	of		guessesLeft	!	There	are	two	things

you	need	to	do	to	make	this	happen	and	you'll	go	through	both	of	them	on	this	card.	First,

you	need	to	check	if	the	player	made	a	guess	and,	if	so,	set		guessesLeft		to	one	less	than

the	current	value.

You	already	have	the	test	for	making	a	guess,	since	you	check	for	a	guess	before

deciding	whether	to	show	"Your	last	guess	was...".	You	can	just	update	that	code	to

include	a	second	line	that	decreases	guessesLeft,	like	this:

if(!empty($playerGuess)){

			echo	"Your	last	guess	was	{$playerGuess}.";

			$guessesLeft	=	$guessesLeft	-	1;

}

3

Now	it's	important	to	keep	an	eye	on	the	order	of	your	code.	If	you	run	this	code	as

written,	you'll	notice	the	count	of	guesses	still	doesn't	drop!	This	is	because	the		echo	

code	that	prints	the	value	of	guessesLeft	runs	before	the	code	that	changes	that	value!	All

you	need	to	do	is	move	(cut	and	paste)	the	code	so	it	comes	just	after	all	your	variable

declarations	at	the	start	and	things	should	work	fine.	Do	that	now	and	try	running	it	again.

4

	 	 	 	

Cleaning	up	the	game
I'm	learning:	PHP

BEGINNER	PHP

16

You'll	notice	that	now	the	count	of	guesses	does	go	down	to	4,	but	it	never	goes	any

lower!	Any	idea	why?	It's	because	of	the	way	PHP	works:	Every	time	the	page	loads,	the

program	runs	again	from	the	start,	with	no	memory	of	the	last	time	it	ran!	That	means	it

always	resets	the	value	of		guessesLeft		to	5	and	then,	if	a	guess	was	made,	subtracts	1.

So,	what	you	need	to	do	here	is	store	that	value	somewhere	and	pass	it	into	the	program

the	next	time	it	runs.	Well,	you	already	have	something	like	that:	the	form	on	the	web

page!	You	can	write	the	current	value	of		guessesLeft		into	the	form	and	read	it	back	out

from		$_GET		later.	Start	with	the	writing,	by	updating	your	form	creation	code	to	look	like

this:

	echo	"<form	method='get'>";

	echo	"Your	guess:	<input	type='text'	name='guess'/>";

	echo	"<input	type='hidden'	name='guessesLeft'	value='{$guessesLeft}'/>";

	echo	"</form>";

The	type	of	the	field	is	"hidden",	so	it	won't	be	visible,	but	will	be	sent	in	on	the	URL.	The

value	is	set	to	the	current	value	of	'guessesLeft'.

1

	 	 	 	

Remembering	values
I'm	learning:	PHP

BEGINNER	PHP

17

Now	you	need	to	pick	up	the	value	you've	saved	and	write	it	into	guessesLeft.	This	gets	a

little	complicated,	since	there	won't	always	be	a	value	in	the	URL	(the	first	time	the	game

is	run,	for	example).	So	you	need	to	replace	the	current	line		$guessesLeft	=	$guesses		with

this:

	$guessesLeft	=	$_GET['guessesLeft'];

	if(!isset($guessesLeft)){

					$guessesLeft	=	$guesses;

	}

This	code	tries	to	get	the	value	from	the	URL	and,	if	it	doesn't	find	it,	leaves		guessesLeft	

empty,	which	causes	the	code	in	the		if		statement	to	run,	filling	it	with	the	value	of

guesses.	The	reason	we	didn't	use		empty		here	is	because	empty	will	give	a	false	if	the

value	is	0,	which	is	going	to	happen	here,	when	the	player	runs	out	of	guesses.	Try

running	the	program	again	and	you'll	see	that	it	all	works	now!

2

You	may	have	noticed	one	last	problem:	The	game	doesn't	end	when	you	run	out	of

guesses!	We'll	look	at	how	to	fix	that,	and	how	to	use	a	secret	number	that	actually

changes,	on	the	next	card!

3

	 	 	 	

Remembering	values
I'm	learning:	PHP

BEGINNER	PHP

18

First,	let's	look	at	making	the	player	lose	the	game.	This	needs	to	happen	when	they've

used	their	last	guess	up,	so	when		$guessesLeft	==	0	.	When	this	happens,	keep	showing

them	their	last	guess,	and	that	they	have	no	guesses	left,	but	not	the	form	or	the	rules.	To

make	that	happen,	you'll	need	to	use	a	new	bit	of	code:		elseif	.

1

As	you	might	have	guessed		elseif		is	a	combination	of	the		else		and		if		statements.

Like		else	,	it	only	happens	if	the	condition	in	an		if		statement	is	false,	but	like		if		it

has	its	own	condition.

You	can	use	as	many		elseif		statements	as	you	want,	but	only	the	first	one	that	has	a

true	condition	will	run.	If	none	of	them	are	true,	the		else		statement	will	run,	just	like	with

a	regular		if	.

To	get	your	game	to	tell	the	player	they've	lost,	you	just	want	to	add	an		elseif		to	the

code	that	checks	their	answer	and	shows	them	the	for	to,	if	they	have	now	guesses	left,

show	them	a	different	message	instead,	like	this:

	if($secretNumber==$playerGuess){

					echo("
That's	right!	I	was	thinking	of	{$secretNumber}!");

	}

	elseif($guessesLeft==0){

					echo("
Game	over!	You	lose!");

	}

	else{

					echo	"<form	method='get'>";

					echo	"Your	guess:	<input	type='text'	name='guess'/>";

					echo	"<input	type='hidden'	name='guessesLeft'	value='{$guessesLeft}'/>";

					echo	"</form>";			

	}

2

	 	 	 	

Finishing	your	game
I'm	learning:	PHP

BEGINNER	PHP

19

Ok,	now	you	have	a	game	where	the	player	can	guess	a	number,	get	a	certain	number	of

tries	and	be	told	if	they	win	or	lose.	Very	cool!	However,	right	now,	that	number	is	always

5...	which	is	less	cool.	PHP	is	pretty	good	at	coming	up	with	random	numbers,	though.	To

use	a	random	number	instead	you	just	need	to	change	the	code	for		secretNumber		like

this:

	$secretNumber	=	$_GET['secretNumber'];

	if(!isset($secretNumber)){

					$secretNumber	=	rand($minValue,	$maxValue);

	}

The		rand		is	a	function	that	takes	two	numbers	and	gives	you	back	a	random	number

between	them.	You're	using		minValue		and		maxValue		here	so	you	only	have	to	change

those	numbers	in	one	place	and	they'll	change	everywhere	in	your	code!

3

Now	you	need	to	make	sure	that	it's	the	same	random	number	throughout	the	game.	It

wouldn't	be	fair	to	keep	changing	it	on	your	player!	You	already	know	how	to	do	this	one

though:	a	hidden	form	field.	Just	add	this	to	your		echo		code	for	the	guessing	form	(you

won't	need	to	keep	storing	it	if	the	player	wins	or	loses!).

	echo	"<input	type='hidden'	name='secretNumber'	value='{$secretNumber}'/>";

4

Now,	try	to	play	your	game!5

How	else	could	you	use	this	code?	You've	got	all	the	pieces	here	to	make	a	quiz	or	an

interactive	story,	where	you	keep	score,	ask	different	questions	on	each	page	and	even

send	the	player	in	different	directions	based	on	their	answers!

6

	 	 	 	

Finishing	your	game
I'm	learning:	PHP

BEGINNER	PHP

20

	 	 	 	

Finishing	your	game
I'm	learning:	PHP

BEGINNER	PHP

21

	Introduction
	Getting Setup
	Your first PHP webpage
	Working with text
	Talking to the user
	Comparison & If statements
	If & Else
	Cleaning up the game
	Remembering values
	Finishing your game

